WFIRST-AFTA

Exoplanet Microlensing Photometry+Astrometry Pipeline

David Bennett
University of Notre Dame

New Photometry/Astrometry code needed

HST J-band

- These images are from MACHO fields with low extinction
- WFRIST-AFTA fields will be closer to the plane with 2-3 × the stellar density
- Proper motion of neighbor stars will be a significant source of photometry errors
- A time series of HST/WFC3/IR data will allow us to test photometry code

Blow-up of HST/WFC3/IR Image

More stars, because the IR luminosity function is flatter.

Most stars are not completely blended, but the images overlap.

Microlensing Survey Stars Will Not Be Isolated

- Proper motion of neighboring stars will contribute to photometry noise
- We need astrometry information for our determination of host star properties
- We want a WFIRST-AFTA exoplanet microlensing pipeline that generates
 - Photometry
 - Astrometry
 - A catalog of detector defects

 Develop exoplanet microlensing photometry+astrometry pipeline pre-launch using HST/WFC3/IR data

Crowded Field Photometry

- PSF fitting photometry
 - not optimal for ground-based microlensing because we can't locate individual stars
- Difference image photometry (DIA)
 - Target star location clear from isolated signal in difference image
- WFIRST differs because
 - Very stable PSF (much better than HST)
 - Proper motion effects are large
 - Standard DIA not likely to be accurate
 - PSFs in W149 filter are color-dependent
 - Strong parallax effects between spring and fall seaons
- PSF fitting photometry is likely optimal
 - but should include proper motions, parallax and color dependent PSF
 - Jay Anderson's HST analysis code is a good starting point

WFIRST Microlensing Pipeline

- Solve for photometry, color, and astrometry (proper motion and parallax) of each star
- Solve for detector effects, and their change in time
 - detector radiation effects
 - temperature effects
 - changing hot pixels
 - PSF shape changes
- What calibration data are needed by other programs?
- Microlensing pipeline can likely be used for a calibration field in the LMC, which is observable at anytime

Lens Star Identification from Space

- Lens-source proper motion gives $\theta_F = \mu_{rel} t_F$
- μ_{rel} = 8.4±0.6 mas/yr for OGLE-2005-BLG-169
- Simulated HST ACS/HRC F814W (*I*-band) single orbit image "stacks" taken 2.4 years after peak magnification
 - 2× native resolution
 - also detectable with HST WFPC2/PC & NICMOS/NIC1
- Stable HST PSF allows clear detection of PSF elongation signal
- A main sequence lens of any mass is easily detected (for this event)

raw image

PSF subtracted

Stacked HST I-band Image of OGLE-2005-BLG-169 Source

Source looks elongated relative to neighbors

PSF for a Single Star Subtracted

Residuals in X when we subtract a PSF from each image and stack...

Fit and Subtract Two Stars: Source & Lens

Very good subtraction residuals when we fit for *two* sources

Lens+Source Solution:

- Offset consistent in the F814W, F555W, and F438W data:
 - $-\Delta x = 1.25$ pixels = 50 mas
 - $-\Delta y = 0.25 \text{ pixel} = 10 \text{ mas}$
 - FLUX: (left) (right)
 - F814W 3392 e⁻ 3276 e⁻
 - F555W 2158 e⁻ 3985 e⁻
 - F438W 338 e⁻ 1029 e⁻
 - $f_1 = 0.51$
 - $f_{V} = 0.35$
 - $f_{\rm B} = 0.25$

HST BVI observations imply

$$M_* = 0.63 M_{\odot}$$

$$M_{\rm p}$$
 = 17 M_{\oplus}

observed separation of 51 mas confirms planet model prediction of 54.3±3.7 mas